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Abstract— Fast, real-time motion planning of an agile, au-
tonomous vehicle in a cluttered environment, with many
geometrically-fixed obstacles, is a very complex problem, espe-
cially because of the vehicle dynamics constraints and resource-
constrained computational capabilities onboard the vehicle. In
this paper, we present computationally-efficient versions of our
novel motion planning algorithm called the Spherical Expansion
and Sequential Convex Programming (SE–SCP) algorithm.
The SE–SCP algorithm first uses a spherical-expansion-based
randomized sampling algorithm to explore the workspace. Once
a path is found from the start position to the goal position,
the algorithm computes a locally optimal trajectory, within its
homotopy class for a desired cost function, by solving a sequence
of convex optimization problems. Thus, the SE–SCP algorithm
is anytime locally optimal and the trajectory is globally optimal
if the number of samples tends to infinity. In this paper,
we further enhance the computational efficiency of the SE–
SCP algorithm using uni-directional and bi-directional rewiring
techniques. We also present a detailed proof of the local
optimality characteristics of the new SE–SCP algorithms for a
special case of vehicle dynamics. Simulation examples involving
quadrotor and spacecraft help demonstrate the effectiveness of
our new algorithms.

I. INTRODUCTION

Motion planning of an agile, autonomous vehicle, like
quadrotor, micro aerial vehicle, or small satellite, has re-
ceived considerable attention during the last decade due to
their large range of applications [1], [2]. Quadrotor and
micro aerial vehicle are suitable for deploying mobile sensor
platforms for intelligence, surveillance, and reconnaissance
missions. Recently, various space agencies have proposed
missions to explore small bodies in space using small satellite
or spacecraft. A common problem in these applications is
that of generating an optimal trajectory for the autonomous
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vehicle, which satisfies vehicle dynamics and collision avoid-
ance constraints, in an environment cluttered with multi-
ple geometrically fixed obstacles. In our prior work, we
developed the Spherical Expansion and Sequential Convex
Programming (SE–SCP) algorithm to address this problem
[3]. In this paper, we we further enhance the computational
efficiency of the SE–SCP algorithm using uni-directional and
bi-directional rewiring techniques.

A. Literature Survey

Motion planning algorithms in the robotics and artificial
intelligence communities, which do not incorporate vehicle
dynamics, can be broadly classified into cell decomposition
methods [4], potential field-based methods [5], [6], and
sampling-based methods [7], [8], [9], [10]. Cell decompo-
sition methods are not suitable for incorporating vehicle dy-
namics, because they partition the state space into cells, and
suffer from the curse of dimensionality. Similarly, potential
field-based methods can get stuck in a local minima [11].
On the other hand, sampling-based methods, like probabilis-
tic road maps (PRM) [8], rapidly exploring random trees
(RRT) [9], expansive space trees (EST) [12], sampling-based
roadmap of trees (SRT) [13], rapidly-exploring roadmap
(RRM) [14]; have enjoyed significant piratical success be-
cause of their ease of implementation, ability to handle
higher-dimensional spaces, and probabilistic completeness
(i.e., the probability that the algorithm fails to return a
solution, if one exists, decays to zero as the number of
samples tends to infinity). Moreover, some of these sampling-
based methods, like PRM∗ and RRT∗ [7], RRT# [15], fast
marching trees (FMT∗) [10]; are asymptotically optimal (i.e.,
as the number of samples tends to infinity, the algorithm’s
solution converges almost surely to the globally optimal
solution, with respect to a distance-based cost function).
Note that there are no optimality guarantees for a finite
number of samples and distance-based cost functions do not
correlate well with the cost of fuel or control effort that
the autonomous vehicle would like to minimize. Therefore,
these sampling-based methods are not suitable for practical
implementation on board agile autonomous vehicles.

Another key issue with directly applying the above
sampling-based methods for motion planning of an agile
vehicle is that the algorithm’s solution might not satisfy the
vehicle’s dynamics constraints. A popular approach for vehi-
cles dynamics that are diffrentially flat (e.g., quadrotors [16],
[17]) is to project the sampling-based algorithm’s solution
onto the space of flat output variables, and then generate



Fig. 1: The SE–SCP algorithm can be used for spacecraft
trajectory planning in asteroid fields or other debris-rich
environments.

a feasible trajectory. But this differential flatness-based ap-
proach cannot incorporate practical dynamics and kinematics
constraints like actuator saturation, bounds on some states,
etc. Furthermore, a strategy for using the sampling-based
algorithm’s solution for vehicles, whose dynamics are not
deferentially flat, does not exist. Therefore, the objective
of this paper is to present a sampling-based algorithm that
directly incorporates any vehicle dynamics, like quadrotor,
micro aerial vehicle, or small satellite.

On the other hand, spacecraft trajectory planning algo-
rithms have to incorporate the nonlinear spacecraft dynamics
into their optimization problems for computing minimum-
fuel dynamically-feasible trajectories. Some of the optimiza-
tion techniques that have been used for solving this compli-
cated nonlinear optimization problem include mixed-integer
linear program [18], pseudospectral method ([19]), and con-
vex optimization [20]. In this paper, we use the sequential
convex programming (SCP) method, which was first used
for decentralized spacecraft swarm guidance in [21]. The
SCP method solves multiple convex optimization problems
that are approximations of the original nonlinear optimization
problem, so that the SCP solution converges to the solution
of the nonlinear optimization problem. Moreover, these con-
vex optimization problems can be solved efficiently using
freely available software [22] and on resource constrained
hardware. Furthermore, in [21], hyperplanes are used for
convexification collision avoidance constraints with other
spacecraft for the SCP method. But there is no guarantee that
a feasible (non-empty) convex set would remain after colli-
sion avoidance constraints in cluttered environments (with
debris, other spacecraft, or near asteroids) have been con-
vexified using hyperplanes. Therefore, we adopt a spherical-
expansion based method to generate convex feasible sets for
our SCP method.

B. Spherical Expansion and Sequential Convex Program-
ming (SE–SCP) Algorithm

In our prior work, we introduced the SE–SCP algorithm,
which is probabilistically complete, asymptotically optimal,
anytime locally optimal (i.e., after the first path is found,
for any finite number of samples, the algorithm?s solution
converges almost surely to the locally optimal solution, with

(a) Spherical Expansion Step (b) SCP Step

Fig. 2: The two steps in the SE–SCP algorithm, where the
obstacles are marked in blue.

respect to the given cost function), and computationally ef-
ficient for real-time implementation on resource constrained
systems [3]. The key steps in the SE–SCP algorithm are:
• Spherical Expansion Step: The algorithm first explores

the workspace using a probabilistic or deterministic
sampling-based method. In addition to building a graph,
each node also encodes the information about the largest
sphere centered at that node which does not intersect
with any obstacle. As shown in Fig. 2a, the objective
of this step is to find paths from the initial to the goal
position.

• SCP Step: Once a geometric path is found, a
dynamically-feasible trajectory is computed by solv-
ing the nonlinear optimization problem using the SCP
method as shown in Fig 2b. The solution of SCP is
locally optimal with respect to the given convex cost
function.

• On further sampling, if a better geometric path is found,
then the algorithm computes a new optimal trajectory
using SCP step. The algorithm always stores the best
trajectory found until the current time instant. Hence,
this algorithm is anytime locally optimal, asymptotically
optimal, and probabilistically complete.

C. Main Contributions

The main shortfall of the SE–SCP algorithm arises from
the dense graph generated during the spherical expansion
step (see Fig. 2a). It is seen that for each new node, the
number of new edges generated during this step grows
exponentially. Therefore, the computational load for stor-
ing this graph grows very quickly, and is not suitable for
resource-constrained hardware. The first main contribution of
this paper are two new algorithms that solve this problem.
Leveraging on the well-known rewiring technique [7], we
first present a new SE–SCP algorithm with uni-directional
rewiring (i.e., the rewiring starts from the start position and
extends throughout the network). Since the goal position is
also known, we also develop a novel SE–SCP algorithm
with bi-directional rewiring (where the rewiring happens
simultaneously from the start and goal positions).

Another important contribution of this paper is a detailed
optimality analysis for the SCP step, for a special case
of vehicle dynamics. We show that the optimal trajectory
calculated using SE–SCP algorithm indeed converges to the



local optimal trajectory for the given cost function. To our
knowledge, this paper presents the first optimality proof
of the SCP optimization technique, where the underlying
optimization problem also changes during every iteration.

This paper is organized as follows. We present the problem
statement in Section II. The SE–SCP algorithm with uni-
directional rewiring and its optimality analysis are presented
in Sections ?? and IV. Computationally efficient variants of
the SE–SCP algorithm are presented in Section ??. Numer-
ical simulation results and comparison with other existing
algorithms are shown in Section V. This paper is concluded
in Section VI.

II. PROBLEM STATEMENT

In this section, the nonlinear optimal motion planning
problem is first presented in continuous-time in Section II-
A. This problem is then transformed into a discrete-time
nonlinear optimal motion planning problem in Section II-B.

A. Continuous-time Nonlinear Optimal Motion Planning
Problem

Let X ⊂ R3 represent the 3D workspace. Let Xobs ⊂ X
represent the obstacles in the workspace. Let δ denote the
clearance that the vehicle must maintain from any obstacle.
Let Xunsafe ⊂ X denote the unsafe regions around the
obstacles that the vehicle cannot enter. Therefore, the region
where the vehicle can maneuver freely is given by Xfree =
X/(Xobs ∪ Xunsafe). Let Xinit ∈ Xfree and Xgoal ∈ Xfree

represent the starting position and the goal position of the
vehicle at times t0 and tf respectively.

Let x(t) ∈ Rnx and u(t) ∈ Rnu represent the vehi-
cle’s state vector and control input at time t. The vehi-
cle’s state vector can be further decomposed into x(t) =(
p(t)T , ṗ(t)T ,θ(t)T , θ̇(t)T

)T
, where p(t) ∈ R3 and θ(t)

represent the vehicle’s position and attitude vectors. The
objective of the optimal motion planning problem is to find
a feasible trajectory for the vehicle that starts at Xinit at time
t0, reaches Xgoal at time tf , and minimizes the given convex
cost function of the control inputs c (u(t)).

Problem 1: Continuous-time Nonlinear Optimal Motion
Planning

minimize
x(t),u(t)

∫ tf

t0

c (u(t)) dt , (1)

subject to p(t0) = Xinit , (2)
p(tf ) = Xgoal , (3)
p(t) ∈ Xfree , ∀t ∈ [t0, tf ] , (4)
u(t) ∈ U , ∀t ∈ [t0, tf ] , (5)
ẋ(t) = f (x(t),u(t)) , ∀t ∈ [t0, tf ] , (6)

where (2)–(3) represent the initial and terminal constraints,
the constraint (4) ensures that the trajectory is within the safe
region, and U ⊂ Rnu in (5) represents the feasible range of
control inputs. The vehicle’s dynamics is given by (6), where
f(·) is a smooth nonlinear function.

B. Discrete-time Nonlinear Optimal Motion Planning Prob-
lem

Here we transform the continuous-time Problem 1(1)–
(6) into a discrete-time problem so that it can be efficiently
solved using SCP. In order to do this, the variables in
Problem 1 are discretized using a zero-order hold approach
such that:

u(t) = u[k], t ∈ [tk, tk+1) , k ∈ {0, . . . , T − 1}, (7)
x(t) = x[k], t ∈ [tk, tk+1) , k ∈ {0, . . . , T − 1}, (8)

∴ p(t) = p[k] , θ(t) = θ[k] ,

where ∆ is the time step size, tk = t0 + k∆, and T is the
number of discrete time steps (i.e., tT = tf ). In Problem 1,
the cost function (1) and the constraints (2)–(5) are easily
discretized using this zero-order hold approach.

In order to write the vehicle’s dynamics equations (6) in
a discrete-time form, this equation is first linearized around
(x?,u?) as follows:

ẋ(t) = f (x?,u?) +A (x(t)− x?) +B (u(t)− u?), (9)

where A =
∂f (x(t),u(t))

∂x(t)

∣∣∣∣
(x?,u?)

, (10)

B =
∂f (x(t),u(t))

∂u(t)

∣∣∣∣
(x?,u?)

. (11)

Equation (9) is then discretized using a zero-order hold
approach as follows:

x[k + 1] = F [k]x[k] +G[k]u[k] +H[k] , (12)

where F [k] = eA∆ , (13)

G[k] =

∫ ∆

0

eA (∆−τ)Bdτ , (14)

H[k] =

∫ ∆

0

eA (∆−τ) (f (x?,u?)−Ax? −Bu?) dτ .
(15)

Therefore, the transformed discrete-time problem is given in
Problem 2(16)–(21).

Problem 2: Discrete-time Nonlinear Optimal Motion
Planning

minimize
x[k],u[k]

T−1∑
k=0

c (u[k]) ∆ , (16)

subject to p[0] = Xinit , (17)
p[T ] = Xgoal , (18)
p[k] ∈ Xfree , ∀k ∈ {0, . . . , T} , (19)
u[k] ∈ U , ∀k ∈ {0, . . . , T − 1} , (20)

x[k + 1] = F [k]x[k] +G[k]u[k] +H[k] ,

∀k ∈ {0, . . . , T − 1} . (21)

Note that the constraints (17), (18), and (21) are linear
constraints. For most vehicle dynamics, (20) is a convex con-
straint because U is a convex set. Therefore, the nonlinearity
in Problem 2 arises from the safety constraint (19), which
is usually not convex.



The objective of this paper is to find an efficient technique
to solve Problem 2(16)–(21). Our SE–SCP algorithms using
uni-directional and bi-directional rewiring first explore the
workspace to approximate the set Xfree using a combination
of convex sets. Once a feasible path it found, then it solves
a convex approximation of Problem 2 using SCP.

III. SPHERICAL EXPANSION AND SEQUENTIAL CONVEX
PROGRAMMING (SE–SCP) ALGORITHM WITH

UNI-DIRECTIONAL REWIRING

The pseudocode of the SE–SCP algorithm with Uni-
directional Rewiring is presented in Algorithm 1. During
the Initialization step (Section III-A), the necessary data
structures are created and initialized. After initialization,
the Spherical Expansion step with Uni-directional Rewiring
(Section III-B) and the Sequential Convex Programming step
(Section III-C) are executed iteratively until the algorithm is
stopped.

(a) Xinit and Xgoal are shown (b) rinit and rgoal are shown

Fig. 3: Initialization step. The obstacles are marked in blue.

A. Initialization Step

The SE–SCP algorithm with uni-directional rewiring in-
tends to generates a tree in the safe region Xfree, which is
rooted at Xinit. Each node in the set of vertices V stores the
position of the vertex, the minimum distance of that vertex
from any obstacle, the parent node of that vertex, and the
cost of the edge from the parent node respectively. For the
vertex Xinit, the minimum distance from the obstacle rinit is
obtained using the function FindMinDistObs(Xinit,Xobs),
which takes in the position of the vertex and the obstacles
in the workspace and returns the radius of the largest sphere
centered on that vertex which does not intersect with any
obstacle (line 1). Then the set of vertices V is initialized
with the vertex Xinit[rinit, 0, 0], where the parent node and
the cost of the edge from the parent node is set to 0 because
it is the root node (line 3). Furthermore, the cost for the path
cPold

and the trajectory cxold
are also set to infinity (line 4).

The number of samples N is also initialized to an appropriate
value.

B. Spherical Expansion Step with Uni-directional Rewiring

During this step, the workspace is explored using the
sampling technique shown in lines 6–?? in Algorithm 1. The
objective of this step is to populate the tree so that paths from
Xinit to Xgoal can be found.

1) Generate Sample: The SE–SCP algorithm can use both
random or quasi-random (deterministic) sampling since the
randomness of the samples is not crucial for motion planning
applications [23]. For a given sampling choice, the function
GenerateSample returns a random sample Xrand ∈ X
(line 6). If random sampling is chosen, then Xrand is drawn
from a uniform distribution in X such that the sequence of
random points are independent and identically distributed. If
quasi-random sampling is chosen, then Xrand is generated
using the Halton sequence, which deterministically produces
samples with low discrepancy and provide good coverage
over the workspace with a limited number of samples [24].

2) Generate New Point: Next, the function
NearestVertex(V, Xrand) takes in the current set of
vertices V and the given sample Xrand and returns the
vertex Xnearest that is nearest to Xrand (line 7), i.e.,:

Xnearest := argmin
X∈V

‖X −Xrand‖2 . (22)

Note that the minimum distance from the obstacles rnearest

for the vertex Xnearest is already stored in V .
The function Steer(Xrand, Xnearest, rnearest) generates

the new point Xnew using either of the two following steps
(line 8):
• If Xrand is serendipitously inside Xnearest’s sphere

(i.e., ‖Xnearest −Xrand‖2 ≤ rnearest), then new point
Xnew = Xrand.

• Otherwise, Xrand is outside Xnearest’s sphere. Then the
new point Xnew is on the surface of Xnearest’s sphere
and closest to the sample Xrand, i.e.,:

Xnew := argmin
‖X−Xnearest‖2=rnearest

‖X −Xrand‖2

= Xnearest + rnearest
(Xrand −Xnearest)

‖Xrand −Xnearest‖2
. (23)

The minimum distance from obstacles rnew for the point
Xnew is computed using the function FindMinDistObs (line
9). In contrast with the classical steering function in RRT∗

[7], where the radius of the sphere is fixed and represents the
step-size of the RRT∗ algorithm, the radius of the sphere in
the SE–SCP algorithm is variable and the average step-size
adapts with the density of obstacles. Therefore, the SE–SCP
algorithm generally finds a feasible path faster than other
sampling-based algorithms.

We then initialize the new vertex Xnew’s
parent with Xnearest (line 10). The function
EdgeCost(Xnearest, rnearest, Xnew, rnew) takes in the
two vertices and outputs the cost of traversing the directed
edge cnearest,new from Xnearest to Xnew, which depends
on the given convex cost function, such that the trajectory
always remains inside the union of the two spheres (line
11). The variable representing the cost from the parent node
cparent is initialized to cnearest,new (line 11). The variable
cmin, which represents the minimum cost of reaching the
vertex Xnew, is initialized as the sum of cparent and the cost
of reaching the vertex Xnearest from the root (line 12). For
any vertex X , the function Cost(X), which represents the



Algorithm 1 SE–SCP Algorithm with Uni-directional Rewiring

1: rinit ← FindMinDistObs(Xinit,Xobs)
2: rgoal ← FindMinDistObs(Xgoal,Xobs)
3: V ← {Xinit[rinit, 0, 0]}
4: cPold

←∞, cxold
←∞, Pold ← ∅

5: for i = 1, . . . , N do
6: Xrand ← GenerateSample

7: Xnearest ← NearestVertex(V, Xrand)
8: Xnew ← Steer(Xrand, Xnearest, rnearest)
9: rnew ← FindMinDistObs(Xnew,Xobs)

10: Xparent ← Xnearest

11: cparent ← cnearest,new ← EdgeCost(Xnearest, rnearest, Xnew, rnew)
12: cmin ← cparent + Cost(Xnearest)
13: Xnear ← NearVertices(V, Xnew, rnew)
14: for all Xn ∈Xnear do
15: if cmin > EdgeCost(Xn, rn, Xnew, rnew) + Cost(Xn) then
16: Xparent ← Xn

17: cparent ← EdgeCost(Xn, rn, Xnew, rnew)
18: cmin ← cparent + Cost(Xn)
19: end if
20: end for
21: V ← V ∪ {Xnew[rnew, Xparent, cparent]}
22: if Xgoal 6∈ V and ‖Xgoal −Xnew‖2 ≤ rgoal + rnew then
23: Xparent ← Xnew

24: cparent ← EdgeCost(Xnew, rnew, Xgoal, rgoal)
25: V ← V ∪ {Xgoal[rgoal, Xparent, cparent]}
26: end if
27: Xrewired ← {Xnew}
28: while Xrewired 6= ∅ do
29: Xf ← first element in Xrewired

30: Remove first element in Xrewired

31: Xnear ← NearVertices(V, Xf , rf)
32: for all Xn ∈Xnear do
33: if Cost(Xn) > Cost(Xf) + EdgeCost(Xf , rf , Xn, rn) then
34: Xn’s parent ← Xf

35: Xn’s cost from parent ← EdgeCost(Xf , rf , Xn, rn)
36: Xrewired ←Xrewired ∪ {Xn}
37: end if
38: end for
39: end while
40: if Xgoal ∈ V then
41: Pnew ← FindPath(V)
42: cPnew

← Cost(Xgoal)
43: if cPnew

< cPold
and Pnew 6= Pold then

44: (xnew,unew, cxnew)← OptimalTrajectory(Pnew)
45: for j = 1, . . . , NSCP do
46: Pnewer ← GeneratePath(xnew)
47: (xnew,unew, cxnew

)← OptimalTrajectory(Pnewer,xnew,unew)
48: end for
49: if cxnew

< cxold
then

50: xold ← xnew, uold ← unew, cxold
← cxnew , Pold ← Pnew, cPold

← cPnew

51: else Pold ← Pnew

52: end if
53: end if
54: end if
55: end for



cost of reaching the vertex X from the root vertex Xinit, is
recursively evaluated as:

Cost(X) =
0 if X = Xinit

Cost(X’s parent) + EdgeCost(X’s parent, X)

otherwise
(24)

Here we assume that the cost function is additive.
3) Add New Point to Tree: The function

NearVertices(V, Xnew[rnew]) takes in the current set
of vertices V and the new vertex Xnew[rnew] and generates
a list Xnear of all the vertices whose spheres intersect with
Xnew’s sphere (line 13), i.e.,:

Xnear := {Xn ∈ V : ‖Xn −Xnew‖2 ≤ rn + rnew} . (25)

It follows from our construction that the set Xnear is not
empty because Xnearest ∈ Xnear. There exists a feasible
collision-free path exists between each vertex in Xnear and
Xnew because their spheres intersect.

We now find the best parent for the new vertex Xnew

(lines 14–20). For each vextex Xn ∈Xnear, if the sum of the
cost of reaching Xn from the root and the cost of traversing
the edge from Xn to Xnew is less than cmin, then the vextex
Xn is set as the parent of Xnew. Finally, the new vertex
Xnew[rnew, Xparent, cparent] is added to the set of vertices V
(line 21).

4) Add Goal to Tree: If the vertex Xgoal is not yet in the
set of vertices V , but Xnew’s sphere intersects with Xgoal’s
sphere, then the vertex Xgoal is added to V with the vertex
Xnew as its parent (lines 22–26).

5) Rewire the Tree: We first initialize the list Xrewired

with the new vertex Xnew (line 27). Then the tree is
recursively rewired as follows (lines 28–39). We take the
first vertex Xf in the list Xrewired and remove it from the
list. We find the vertex Xf ’s neighbors Xnear, and check
if any of the these neighbors can have a lower cost by
traveling through Xf . If so, then the parent of that vertex
is updated and neighbor is added to the list Xrewired. The
process continues till the list Xrewired is empty. This process
ensures that the rewiring step is used for every vertex whoes
cost is reduced during the current time instant. This is a
significant improvement over the rewiring step in [7], where
only the neighbors of Xnew are rewired.

In Fig. 4, multiple iterations of the spherical expansion
step are shown. At each step, a new vertex and a new edge
are added to the tree, while some existing edges are rewired.
Note that the tree is rooted at the start position.

C. Sequential Convex Programming Step

During this step in 40–54 in Algorithm 1, the path from
the initial position to the goal position is used to find the
locally optimal trajectory. This step is only executed if the
goal position has been found, i.e., the goal vertex Xgoal has
been added to the set of vertices V (line 40).

(a) Iteration 2 (b) Iteration 3 (c) Iteration 4

(d) Iteration 5 (e) Iteration 6 (f) Iteration 7

Fig. 4: Multiple iterations of the spherical expansion step
with uni-directional rewiring

1) Find Path: The function FindPath(V) takes in the set
of vertices V and returns the new path Pnew, which is a
sequence of vertices starting with Xinit and ending at Xgoal

(line 41). This path is found using the parent information
stored in each vertex. The cost of this new path cPnew

is
easily calculated using Cost(Xgoal) (line 42).

(a) Shortest path on the graph (b) Optimal trajectory through
this Path

Fig. 5: Generating Shortest Path and Trajectory Optimization
over this Path

2) Generate Optimal Trajectory: If the cost of the new
path cPnew

is less than that of the old path cPold
and the

new path is different from the old path, then the opti-
mal trajectory is found along this new path. The function
OptimalTrajectory(Pnew) takes in this new path Pnew

and returns the optimal trajectory xnew, unew and the cost
of traversing this trajectory cxnew

by solving an approximate
version of Problem 2(16)–(21) (line 44). If no additional
trajectory is provided (as is the case in line 47), then a
nominal trajectory is used for linearization.

The path Pnew = {X1[r1], X2[r2], . . . , Xn[rn]} is a se-
quence of n vertices with corresponding radii, where X1 =
Xinit and Xn = Xgoal. An example path is shown in Fig. 6.
Our key innovation is to use this sequence of spheres as an
approximation of Xfree, in order to convexify the constraint
(19) in Problem 2.

We first set the time step size ∆ such that T = (2n− 1).
In order to convexify the constraint (19), we enfore that
all points with even index are at the intersection of two
spheres (29,30), and all points with odd indices are inside
their corresponding sphere (31). Thus, the convex problem



Fig. 6: Visualization of optimal trajectory generation using
SCP

is given in Problem 3(26)–(33).
Problem 3: Discrete-time Convex Optimal Motion Plan-

ning

minimize
x[k],u[k]

T−1∑
k=0

c (u[k]) ∆ , (26)

subject to p[0] = Xinit , (27)
p[T ] = Xgoal , (28)

‖p[2`]−X`‖2 ≤ r` , ∀` ∈ {1, . . . , n− 1} , (29)
‖p[2`]−X`+1‖2 ≤ r`+1 , ∀` ∈ {1, . . . , n− 1} , (30)

‖p[2`+ 1]−X`+1‖2 ≤ r`+1 , ∀` ∈ {1, . . . , n− 2} , (31)
u[k] ∈ U , ∀k ∈ {0, . . . , T − 1} , (32)

x[k + 1] = F [k]x[k] +G[k]u[k] +H[k] ,

∀k ∈ {0, . . . , T − 1} . (33)

Note that Problem 3(26)–(33) is a convex optimization
problem. Hence it can be solved efficiently using freely avail-
able software [22] and on resource constrained hardware.

The optimal solution of Problem 3, namely xnew =
{x[1],x[2], . . . ,x[T ]} and unew = {u[1],u[2], . . . ,u[T −
1]}, can be used to setup an new optimization problem. The
function GeneratePath(xnew) takes in this optimal solution
xnew and returns a new path Pnewer, which is a sequence
of points based on xnew and the corresponding radius (line
46). If the spheres of 2 vertices in xnew do not intersect,
then the spheres from the previous step is previous step is
used to fill in the gap. Once again, the optimal trajectory
along this path can be found using Problem 3(26)–(33),
where xnew and unew are used for linearization (line 47).
This optimization process using SCP continues NSCP times
(lines 45–48). After the optimization process has terminated,
the current trajectory cost is compared with the stored cost,
and the best trajectory is stored (lines 49–52).

At the end of N such loops, the SE–SCP algorithm using
uni-directional rewiring returns the optimal trajectory xold

and uold.

IV. ANALYSIS OF THE SE-SCP ALGORITHM

V. NUMERICAL SIMULATIONS

In this section, we first show that the SE–SCP algorithm
can be used by a spacecraft to navigate a debris field. We
then present comparisons with existing algorithms like RRT∗

and PRM∗.

A. Spacecraft in Debris Field

In this subsection, we show that the spacecraft can use the
SE–SCP algorithm to move through a cluttered environment
like a debris field. The debris environment, the start position,
and the goal position are shown in Fig. 7. The spacecraft
dynamics are discussed in Section ??. The objective is to find
a trajectory from Xinit to Xgoal so that the fuel consumed
is minimized.

(a) (b)

Fig. 7: Asteroid environment

Fig. 8 shows two trajectories in two different homotopy
classes that are generated by the spherical expansion step.
Each of these trajectories are further refined using the
SCP step, as shown in Fig. 9. The solution of the SE–
SCP algorithm after a finite number of samples is the best
locally optimal trajectory shown in Fig. 9. thus the SE–SCP
algorithm is suitable for spacecraft applications.

(a) (b)

Fig. 8: Paths in different homotopy classes found by the
spherical expansion step



(a) (b) (c)

(d) (e) (f)

Fig. 9: Trajectories are further optimized in the SCP step

B. Crazyflie Quadrotor in Cluttered Environment

In this subsection, the Crazyflie quadrotor [?] is required
to move from an initial configuration to a final one, through
several cluttered environments, as shown in Fig. 10, Fig. 11
and Fig. 12. The quadrotor dynamics are discussed in Section
?? and, as already mentioned above, it is highly non-
linear. However, at each iteration, the non-linear dynamics
is linearized around each feasible way-point returned by the
algorithm at the previous iteration. The objective is to find the
optimal trajectory such that the control input is minimized,
where the control input is the voltage which is applied to
the motors, which in turn is controlled using a pulse width
modulated (PWM) signal.

(a) (b)

Fig. 10: Walls

(a) (b)

Fig. 11: Forest

(a) (b)

Fig. 12: ROS Kitchen

To assure that the quadrotor trajectory generated by the
SE–SCP algorithm is feasible, boundary conditions inherent
to the achievement of the desired task are imposed on the
quadrotor such that:
• X(0) = Xinit

• X(T ) = Xgoal

The inequality constraints of the form Aineqx0bineq con-
sists to place constraints on velocity v, acceleration a, jerk ȧ,
and snap ä to ensure continuity in the trajectory as well as to
restrict the trajectory to the dynamic limits of the quadrotor
.

Acceleration constraints are used to ensure the quadrotor
is near a desired attitude at a certain step along the trajectory.
To ensure continuity of the jerk between the trajectories
between consecutive waypoints and since jerk has to be
continuous and bounded, jerk and snap respectively have to
be bounded.[?]. Angular velocity and acceleration vectors
have to be also sufficiently bounded in order to impose the
control authority constraints. However,is not guaranteed that
the attitude quaternion remain close to a unit vector at each
time step. For the remark about this last statement refers
to [?],[?],[?]. For this reason , at each time step, a new
desired quaternion vector is calculated such that the condition
‖q‖ = 1 is respected.

Results for quadrotor simulation are shown in Fig. 13,
Fig.14 and Fig.15.

(a) (b)

Fig. 13: Walls



(a) (b)

Fig. 14: Forest

(a)
(b)

Fig. 15: ROS Kitchen

C. Comparison with RRT∗ and PRM∗

In this subsection, we compare the SE–SCP algorithm with
the RRT∗ and PRM∗ algorithms [7]. These algorithms cannot
directly incorporate the spacecraft dynamics. Therefore, we
use the single integrator dynamics which is given by:

ẋ = u . (34)

The 3D benchmark environments are shown in Figs. 16–20.
Each of the algorithms are executed multiple times and the
histogram plots show the average computational runtime and
trajectory cost. The SE–SCP’s results with both random and
quasi-random sampling are shown.

(a) Benchmark En-
vironment (b) Running Time (c) Trajectory Cost

Fig. 16: Benchmark Comparison Room 1. The simulation is
run with 500 samples.

(a) SESCP Opti-
mized trajectory (b) RRT* trajectory (c) PRM* trajectory

(a) Benchmark En-
vironment (b) Running Time (c) Trajectory Cost

Fig. 18: Benchmark Comparison Room 2. The simulation is
run with 2000 samples.

(a) SESCP Opti-
mized trajectory (b) RRT* trajectory (c) PRM* trajectory

(a) ROS Kitchen
environment (b) Running Time (c) Trajectory Cost

Fig. 20: Benchmark Comparison in the ROS Kitchen envi-
ronment. The simulation is run with 1000 samples.

(a) SESCP Opti-
mized trajectory (b) RRT* trajectory (c) PRM* trajectory

We conclude from these comparisons that the SE–SCP
algorithm outperforms the the RRT∗ and PRM∗ algorithms.
The main reasons for the superior performance of the SE–
SCP algorithm are as follows:
• The spherical expansion step in the SE–SCP algorithm

adapts with the density of the obstacles in the envi-
ronment. Since there is no pre-defined step-length in
the SE–SCP algorithm, the algorithm can build larger
spheres when there are no nearby obstacles. This is
extremely helpful in quickly covering the workspace
and possibly generating a simple path from the start
to the goal position.

• The SCP step generates the locally optimal trajectory
within the homotopy class, even if the original path
is not close to the local optimal. This is useful in
reducing the number of samples and computational time
necessary to find the optimal path, while reducing the
trajectory cost.

Therefore, the SE–SCP algorithm is suitable for generating
optimal paths through cluttered environments while obeying
the spacecraft dynamics.



VI. CONCLUSIONS

In this paper we presented a novel spacecraft trajectory
planning algorithm, through uncooperative cluttered environ-
ments, that uses the spacecraft dynamics and minimizes the
fuel consumed by the spacecraft. Our SE–SCP algorithm
mainly has two steps. During the spherical expansion step,
the algorithm explores the workspace using a random or
quasi-random sampling technique. This step generates coarse
paths from the start position to the goal position. During
the SCP step, the locally optimal trajectories are generated
along these paths using SCP optimization. Therefore, as
newer paths are discovered by the spherical expansion step,
better trajectories are generated by the SCP step. Hence
the algorithm guarantees locally optimal trajectories using
a finite number of samples and a globally optimal trajectory
as the number of samples tends to infinity.
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